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l. Introduction 

The ability to represent relationships among entities is a 
central problem in connectionist models of cognition. 
The problem has gone under several names including 
variable binding, role representation, and "t.hirdness". 
Smolensky (1987) has shown that many attempts to solve 
this problem can be analyzed mathematically using 
tensors, or generalized vector outer products. Dolan and 
Dyer (1987, in this volume) have applied tensorial 
representations to demonstrate partS of a connectionist 
story understanding model. 

What has not been shown, however, is whether explicidy 
adapting representations currently in use to a tensorial 
scheme actually buys anything in a modeL Aspects of a 
model that one would hope to improve by using a 
mathematically based approach might be: (1) easier 
analysis of results, (2) analytical predictions of model 
performance, and (3) more straightforward construction 
of a simpler modeL The purpose of this paper is to take 
an existing model that solves some aspects of the variable 
binding problem, Touretzky & Hinton's (1988) connec· 
tionist production system, and show how some of the 
advantages listed above can accrue from building a 
closely related model by straightforward application of 
the tensorial representation. This work demonstrates (3), 
and previous! y developed techniques from (S molensky 

1987) could be used to make progress on (1) and (2). 

1.1. Tensor products 

The tensor product can be straightforwardly understood as 
a generalization of the outer product of two vectors. 
Given two column vectors, x andy, the inner product, x1y 

is the familiar "dot" product x•y. The outer product, xyr, 
is simply the familiar matrix multiplication which takes a 
column vector and a row vector and yields a matrix. The · 
ij element of this matrix is :x;; ~ This outer product 

• I 
operaoon can also be viewed as a tensor product which is 
written x®y. Thus the matrix xy1 can be viewed as a 
tensor with two indices, or a tensor of rank two. A vector 
is a tensor with one index, or a tensor of rank one; and a 
simple scalar is a tensor of rank zero. Similarly, there are 
tensors of rank higher than two, with more than two 
indices; these can be generated by taking the tensor 
product of more than two vectors. 

= 

Figure 1: Building a third-rank tensor from three vectors. 

·) \. 



If all we ever needed was a 2nd order tensor we could 
stay with familiar matrix notation. However, the major 
demonstration of the paper requires 3rd order tensors and 
so we shall use the more general apparatus of tensor 
algebra. Figure 1 demonstrates how to view the third 
order tensor x®y®z. Simply take the elements of x®y, a 
familiar matrix, and form planes of them, one for each 
element of z: in each plane i , the matrix x®y is multi
plied by ·the sc.a1.ar z
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To use tensors to represent structure, we decompose a 
structure into a set of filler/role pairs and then use a sum 
of tensor products as the representation of the structure. 
Formally this can be stated as follows: 

Let a setS of structured objects be given a role decompo
sition: a set of fillers, F, a set of roles, R, and for each 
objects a corresponding set of role/filler bindings: 

Let a connectionist representation of the fillers F be 
given; each J: is represented by the activity vector f r 

Let a connectionist representation of the fillers R be 
given; each r.is represented by the activity vector r ~ 

J J 

Then the corresponding tensor product representation of s 
is, 

A number of the general properties of tensor product 
representations are analyzed in (Smolensky 1987). One 
of them is that they can be recursively imbedded. This 
leads to overall representations which are tensors of rank: 
higher than two; essentially, each level of imbedding adds 
a rank to the overall tensor. 

To see how a tensor product can be used to represent 
symbolic information, we only need to realize that most 
traditional symbolic representations can be broken down 
into triples of symbols. For example a frame, s with slots, 
r. and fillers f can be represented with a set of triples, (s r. 
/;J. By establlshing a vector representation for frames, ' 
slots, and fillers, we can represent a frame by :E,s®r;®f r 
Examples of decomposing frames into triples can be 
found in (Dolan and Dyer, in this volume). 

2 

1.2. DCPS as a tensor product 

One model, which at first glance seems not to be using 
tensor products, is the distributed connectionist produc
tion system (DCPS) (Touretzky & Hinton 1988). DCPS 
uses an alphabet of 25 symbols, A-Y, and its rules use 
triples of symbols that are coarse coded. To construct the 
representation, a pool of 2000 units is used. Each unit has 
a receptive field table associated with it. An example 
receptive field is shown in Figure 2. 

A unit is part of the representation of a triple if and only if 
its receptive field table has the ls~ 2nd. and 3rd elements 
of the triple in its 1st, 2nd and 3rd columns, respectively. 
For example, the unit with the receptive field in Figure 2 
is part of (CAB), (CAD), and (11 ED), but it is not part 
of (C A C) or (GIL). The representation of a triple is the 
set of all units that have that triple in their receptive field. 
In the version of DCPS reported in (Touretz.ky & Hinton 
1988), each table had six rows and each triple was 
represented by the activity of about 28 units. 

To see how this representation can be analyzed with the 
tensor product, we will use a diagonalizing procedure first 
reported in (Smolensky 1987). We will demonstrate the 
procedure using pairs of symbols, rather than the triples of 
DCPS, since that is easier to visualize; the analysis 
extends immediately to the triple case using third-rank 
tensors. 

We first note that with respect to DCPS the symbols in 
different columns do not interact and an "A" in the first 
column really bears no meaningful relation to an "A" in 
the second column. Therefore a pair can readily be 
viewed as something like(~ B2) or (G1 A,). Given a set 
of N receptive field tables (2000 in DCPS) we can fonn a 
matrix where the rows and columns are labeled by the 
columns of the receptive field tables. The matrix is NxN 
because there are N independent receptive field table, and 
the tables are Kx2, where K is a "coarseness" parameter. 

c A I 8 
F E 0 

M H J 

Q K M 

s T p 

w y R 

Figure 2: Example Receptive field table 
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Figure 3: Analyzing DCPS's representation as a tensor product 

Now we can represent a symbol ~1 by the N bit pattern 
consisting of active units for each of the tables in which 
~tis in column 1, and likewise for any symbol~· This 
procedure is demonstrated in Figure 3, where both 

·representations of (A A) are shown with DCPS on top of 
the tensor product. The grey squares are the active units 
for the tensor product and the black square is the active 
unit used by DCPS. In the example shown in the figure, 
the representations for A1 = (0 0 1 1) and A2 = (0 1 1 0) 
are derived by labeling the rows and colwnns of the 
matrix with the first and second columns of the receptive 
field tables. Using this representation we can view DCPS 
as using a tensor product representation with 2000 bit 
symbols. The reason that this does not produce an 
unreasonable number of units in the working memory 
representation is that all but the diagonal elements are 
discarded. In Figure 3, diagonal elements are the four 
outlined units shown on top of tbe tensor product repre
sentation. 

On the average, each symbol would be represented by a 
2000 bit vector containing 2000x6/25 = 480 active bits 
since each receptive field table of DCPS had 6 rows and 
there are 25 symbols. There are a tremendous number of 
480 out of 2000 bit patterns, approximately 2 x 1 ()481

, only 
25 of which would be used for each column. This makes 
DCPS an extremely sparse sampling of that symbol space. 
In fact those 25 symbols are specially designed so that 
every three-way conjunction of them has very close to 28 
active units. This fact is extremely important to the 
dynamics of DCPS and finding those special receptive 
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field tables took a considerable amount of computational 
effOrt (Touretzky & Hinton 1988). 

1..3. The possible advantllges of tensors over custom 
coarse codings 

A naOJral question to ask is whether another approach u; 
the same task might be able to use a dense sampling of the 
symbol space. The full tensor product has a desirable 
property that makes it a likely candidate. The property, 
which is covered in detail in (Smolensky 1987), is the 
ability to unbind one component of an fVtb. order tensor 
product given N-1 components. 

The method of unbinding we will be using here is called 
the self-addressed technique in (Srnolensky 1987). Given 
a tensor product representation of the triple (s r j), s®r®f~ 
we can unbind the filler f from the frame role it is bound 
to, s®r, by a simple linear computation: (s®r®tj•(s®r) = 
aJ where a is a constant magniOJde factor equal to 
(s•s)(v•v). If we have a superimposed tensor product 
representations of multiple slot/filler bindings, we can still 
perform unbinding using self addressing. Now, however, 
we will get a result that has components in the direction 
of other fillers. For example, if we try to unbind the flller 
of s1 ®r 1 from the superimposed tensor product !:s. 
®ri®fi We Will get L~StS1)(ri•r1)fi If all the diffe;e~t S/S 
are orthogonal and likewise for the r.'s, then we are 
guaranteed to still get ai

1 
as above. ' 

More generally, if the various s.' s have the same lengtb 
and similarly for the various r/~. then this unbinding ' 
procedure will produce a weighted superposition of the 
f/ s in which fl has the largest weight. However, in a 
densely sampled symbol space there may be another filler 
symbol!; with a connectionist representation f. which is 
closer to the unbound pattern than is rl" J 

From the above discussion, one might surmise that using 
the tensor product representation on densely sampled 
symbol spaces is not a workable solution. However, it 
may happen that we are simultaneously trying to satisfy 
multiple retrieval cues rather than a single one (i.e., if we 
are looking for something that simultaneously fills 
multiple roles). This extra constraint can actually 
enhance retrieval. This is exactly the situation in the 
retrievals needed for the productions used in DCPS, 
where the conditions require unbinding a filler that 
simultaneously fllls two different roles. We shall see 
below how these multiple constraints can be exploited. 



2. DCPS redone with tensor products: 
TPPS 

We now describe a connectionist production system based 
on tensor product representations~ TPPS, that. like DCPS, 
operates with productions of the form 

The condition side consists of two triples, each of which 
contains a common variable in the final position. The 
action side consists of a triple to add and a triple to delete, 
and these triples also contain the variable from the 
condition side in their third position. As in DCPS, there 
were 25 distinct symbols that could occupy each of the 
three positions in the triples. Actually both the DCPS and 
TI'PS architectures will work with less restrictive rule 
formats. Other rules with more than two actions per rule 
and arbitrary placement of variables in the action portion 
have been demonstrated with DCPS. 

2.1. Working memory 

The working memory (WM) of TPPS is a network 

containing a representation of a set of triples Ui((si ri 

J;J}; the representation is a third-order tensor product B = 

i:s.®r.®f_ In our simulation, the vectors chosen to 
1 I I 1 

represent the elementary symbols si were 7-bit vectors 

Working 
Memory 

(sl rl) 

producuon 1 
subnet 

ltJ'1tnqttl-ot~•ecn 

production 2 
subnet 

ltJ'1tnqttl-ot-mldeh 

production 
subnet 

0 

+(~ rJ > 

-<s.; r4) 

winner
ta.ke-aJI 

competition 

Figure 4: The architecture ofTTPS 
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. consisting of three ls and four Os. They were chosen so 
that no two vectors had more than two 1-bits in common 
(i.e.~ the dot-product between any two was at most 2); 
otherwise the vectors were rnndom. The same procedure 
was used to assign 7 -bit vectors to the ri, and again to the 
J;~ There was no reason to be concerned about the relation 
between vectors representing different types of symbols, 
(e.g.~ one of the s; and one of the[) conceptually, they 
belong to different 7-dirnensional vector spaces. Since 
WM contains tensor products of three 7-bit vectors, it 
consists of 73 = 343 units. 

2.2. The architecture 

In TPPS, each production corresponds to a separate sub
network. The details of the connections for these sub
networks will be provided in the next section; here we 
intend only to indicate their qualitative structure. The 
sub-network for a given production consists of a set of 
units for holding possible values of z for matching the 
first triple in the condition, another set of units for holding 
the corresponding values for the second triple, and a third 
set of units for building a common value across the two 
triples. We call these three groups of units the x

1 
units, 

the z2 units, and the z units, respectively. In our simula
tion, each group contained 7 units. The connections from 
WM into the z 1 units encode the pattern (s1 r) from the 
first triple; the connections from WM into the z2 units 
encode the pattern from the second triple (s2 r 

2). The 
connections from the z1 and z2 units into the z units are 
the same for all productions. There is an additional unit 
in each production sub-networ~ it registers how strongly 
that production has matched to WM. These strength-of
match units for all productions are connected in a winner
take-all network, and the production with the strongest 
match is permitted to send activation back to WM to add 
and delete the appropriate triples. The connections into 
WM from the x units in a production sub-network encode 
the patterns (s1 rJ). (s4 r~) from the action side of that 
production. In order to minimize the propagation of noise 
into WM, before firing, the production sub-network 
cleans up its representation of z. The top level organiza
tion of the architecture is shown in Figure 4. 

The processing in TPPS proceeds as follows. The 
production sub-networks in parallel perform matching to 
WM, with feed-forward activation passing in parallel 
from WM to the x

1 
and x

2 
units, then to the x units and 

then to the strength-of-match unit The winner-take-all 
competition between the strength-of-match unit achieves 
best-match conflict resolution, where all the strength-of
match units are driven to zero activity except the most 
active. While this conflict resolution is going on, each 



production sub-network is cleaning up the pattern in its x 
units .. generating a noise-free pattern in another group of 
units called the x* units. When the most active strength
of-match unit has been selec~ it opens the gated 
connections between its x* units and WM. The contents 
of WM are updated and the cycle begins again. 

2J. Representation ofproductions' conditions 

The condition side of each production is encoded in the 
connections from WM to the x1 and :::, units. The connec
tions from WM to the xr units perform a linear operation: 
from B, the state of WM, they set up in the x1 units the 
pattern B • ( s1 ®r 1). Thus the x1 units are purely linear, 
and the connection from WM unit ijk to x1 unit m is (s1)i 
(r1).<\,. (om. is 1 if k = m, otherwise it is 0). The story 
for 

1 
the connections from WM to the x2 units is analogous. 

Thus the pattern in the x1 units indicates those symbols x1 
corresponding to triples (s1 r 1 x1) present in WM. If there 
are no such triples, the pattern in the x1 units will be 
approximately zero; if there is one such triple, a pattern 
approximating the corresponding value of x1 will be found 
in the x 

1 
units. If there are several such triples, the 

superposition of the patterns representing these different 
possible values of x1 will be found. 

2.4. Variable binding 

At this point we have done variable binding separately for 
the two triples in the condition of the production: the 
separate results are held in the x1 and X:z units. We now 
try to extract from these the representation of a common 
value in the x units. The feed-forward connections from 
the x1 and x2 units to the x units take the vectors ~ and X:z 
and generate the vector x by the bilinear computation: 

The + operation is component-wise multiplication: the 
activity of the mill x unit is the activity of the mfb x 

1 
unit 

times the activity of the mfb x 2 unit This multiplication 
can be achieved with Hinton's (1981) triangular multipli
cative junctions or with sigma-pi (Rumelhart, Hinton & 
McOelland, 1986) units. 

The + operation can be used to seek a common binding 
for x because it is a bilinear function with the propeny 
that if x is a Boolean vector (its components are all Os and 
ls) then x + x = x. On the other hand, if x andy 
represent two different symbols, x + y will be close to 
zero (its length is x • y, which is close to zero since the 
vectors representing distinct symbols are nearly orthogo-
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nal). Thus. for example, suppose WM contains two 
possible bindings, a and b, for x in the fll'St triple of a 
production's condition, and two possible bindings, a and 
c, for the second triple. Then we will have (ignoring 
multiplicative scale factors): 

x1 =a+ b 
~=a+c 

X =~ + ~ 
= (a + b) + (a + c) 
=a+a+a+c+b+a+b+c 
:a. 

Since the vectors representing different symbols are not 
completely orthogonal, the resulting vector x will contain 
noise. TPPS has a clean-up circuit in each production's 
sub-networlc that takes the noisy vector x and replaces it 
with a vector x• that is the symbol vector closest to x. 
The current version does this with a simple local competi
tion: there is one unit for each possible symbol, and each 
receives feed-forward activity from x equal to the dot 
product ofx with that symbol's vector. A simple winner
take-all feedback system connecting these symbol units 
selects the most active unit, i.e., the symbol closest to x, 
and this unit then sends feed-forward activity to the x* 
units. The connection from the mill ..t unit to the unit for a 
symbol a is the rrrn element of the vector representing a, 
and this is also the strength of the connection from the a 
unit to the mfb r* unit The symbol units and the r* units 
are purely linear. 

x1 units 

Figure 5: A production sub-network 

winner
take-all 

competition 
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winner-
take-aU 
competition 

Figure 6: Detail of the clean-up network 

Note that the clean-up circuit is in a position not only to 
eliminate noise? but also to choose between multiple 
possible of values for x, should WM support more than 
one simultaneous binding for both triples in a 
production's condition. To achieve this, the winner-take
all circuit needs some way of breaking a tie when two 
symbols match x equally well. This can be achieved by 
adding a small amount of noise to winner-take-all 
competition. 

Thus we see, as mentioned above, that noise and ambigu
ity problems that may arise in perfonning a single 
unbinding can be ameliorated by combining multiple 
unbindings representing multiple simultaneous constraints 
on the retrieved item. In fact, the more knowledge we 
have about what we want to retrieve, the clearer the result 
will be. 

2.5. Best-match conflict resolution 

As explained in the preceding section, if there is no way 
to jointly bind x in the two condition triples, there will be 
a weak noisy pattern in the x units. Thus the strength of 
the pattern in the x units can serve as a measure of how 
well the production's condition matches WM. This part 
of the architecture is shown in Figure 5. 

Each production sub-network contains a unit whose value 
is the squared length of the vector in the x units. This 
strength-of-match unit sums the squares of the activities 
of all the x units. As with the + operation, this can be 
implemented either by making the strength-of-match unit 
a sigma.-pi unit or by making it a linear unit and using 
multiplicative triangle junctions. The details of the clean 
up circuit are shown in Figure 6. 

A winner-take-all circuit connecting the strength-of
match units for all productions then chooses the most 
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active unit- the best-matched production, according to 
TPPS' s measure of quality of match. 

2.6. Firing a production; representation ofproduc-
tions1 actions 

The winning strength-of-match unit now gates open 
connections from its .r* units to WM. These connections 
use the x* vector representing the selected value for x to 
build the patterns representing the two triples on the 
action side of the production, (s3 r3 

x) and (s4 r4 
x), and 

add the frrst and subtract the second from WM. This 
amounts to changing the vector B in WM by adding 
~®r3®x*- s4®r4®x*. Thus the connection from the mtb. 
.r* unit to the ijk element of WM is 

The units in WM are pureiy linear. 

2.7 Comparison with the DCPS architecture 

Figure 7 shows the top level architecture of DCPS form 
(Hinton and Touretzk:y 1988). Both architectures use a 
set of units for working memory. DCPS uses binary 
working memory units where superimposed representa
tions are inclusively ORed together. TPPS uses linear 
working memory units where superimposed representa
tions are added together. TPPS used six different activity 
levels for working memory elements (0.0, 0.2, 0.3, 0.6, 
0.8, 1.0). DCPS used clause spaces to extract triples from 
working memory. TPPS does not explicitly extract triple 
representations from working memory. In DCPS, the 
units in the rule space all share the same bind space 
during the competitive match. In additior4 all the effect 
of variable binding on the rules passed through the clause 

Figure 7: DCPS architecture 



spaces. In TPPS the clean-up units perfonn a function 
similar to the DCPS bind space. The bind in TPPS space 
is smaller than in DCPS (equal to the number of symbols) 
but it is duplicated in every production sub-network. In 
addition, each rule connects directly to its binding units. 
In DCPS, the rule space is a set of winner-take-all cliques. 
In TIPS, the strength-of-match units also engage in 
winner-take-all competition. In summary the major 
differences at the architectural are: (1) DCPS and TTPS 
use different encodings of triples, and (2) because TIPS 
does not use clause spaces is it almost completely feed 
forward (except at the end) whereas DCPS uses a com
petitive matching strategy throughout the course of rule 
matching. 

3. Results and discussion 

We tested 1PPS on one of the test rule sets from DCPS: 

(A A ?) (B B ? ) => -{A A ? ) +(C c ?) 
(B B ?) (C c ?) => -(B B ?) +{D D ?) 
(C c ?) (D D ?) => -(C c ?) +{E E ?) 
(D D ?) (E E ?) => -(D D ?) +(F F ?) 
{E E ?) (F F ?) => -(E E ? ) +(A A ?) 
(F F ?) (A A ?) => -(F F ?) +(B B ?) 

This rule set was allowed to cycle, starting from the state 
of having only (A A X) and (B B X) in working memory 
and is able to run indefinitely without misfiring. 

To test for robustness to cross-talk among the symbols, 
we also rnn TPPS with noise; we added one random triple 
of symbols after each production f.tring. Note that since 
our symbols are represented by 7 -bit Boolean vectors of 
length 3, of which rbere are only 35, we are using a fairly 
dense sampling of the symbol space, using 25/35 = 71% 
of the possible symbol vectors (as compared to lxl0480% 
used by DCPS). Thus in adding noise triples of such 
densely packed symbol vectors, we are introducing quite 
a high level of cross-talk across symbol vectors. 

The average number of productions fired before error was 
9 and the standard deviation was 3. An error was defined 
as either a production fuing out of order or getting an 
incorrect binding on the output In most cases, even after 
the flrst error, the production system was able to pick up 
the sequence again, either using the correct symbol on the 
output, X, or a symbol which had a very similar represen
tation. (Note that for a symbolic system, the expected 
number of error-free production cycles under the same 
conditions is very large; the probability of randomly 
generating a triple that will cause the wrong production to 
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fire in collaboration with one of the legitimate triples is 
6(253 = 4 x 10"' so the expected number of correct firings 
before such a misfrre is about 2500.) 

These results suggest that tensor operations can compete 
with custom coarse codings in their ability to represent a 
modest nwnber of active elements in working memory 
chosen out of large nwnber of possible elements. This 
capability is realized by allowing multiple concmrent 
unbindings or queries to produce an unambiguous result 
where a single unbinding might have been impossible to 
interpret 

Another advantage of this representation is that it allows a 
much denser sampling of the symbol space than other 
representations. This is extremely beneficial when we 
also want to use the bit vector representations of symbols 
as feature vectors in another part of a model. Less sparse 
representations of structures can also be used. In DCPS, 
the fraction ofWM cells involved in representing each 
triple is 28/2000 = 1%, while in TPPS it is (3(7)3 = 8% 
(the ratio of 1:8 is the cube of the ratio of the fraction of 
active elements in the vectors representing symbols: 6/25 
= 24% for DCPS, 3n = 43% for TPPS). 

The main difference in design of the representation 
between DCPS and TPPS is that in DCPS the representa
tion was designed at the level of whole strUCtures -
triples - while in TPPS it was designed at the level of the 
atomic constituents- symbols- and combined with a 
simple, general-purpose scheme for building representa
tions of structures from the representation of the constitu
ents. In the tensorial approach, the computational 
adequacy of the patterns for the structures is a conse
quence of the adequacy of patterns for the symbols, which 
is easy to ensure: it suffices rbat they not be too dose in 
their small vector space. "Mind the symbols and the 
structures will take care of themselves." In DCPS, on rbe 
other hand, rbe acceptability of the representation of rbe 
triples has to be built using considerable computational 
effort The representation of the triples did not derive in 
any general and well-motivated way from the representa
tions of rbeir constituentS (indeed, it is only through some 
kind of rational reconstruction like that presented in rbe 
beginning of this paper that we can view the distributed 
patterns for the triples as deriving in any way from a 
distributed representation of the constituents). 

In addition to its representational advantages, the tensorial 
approach can also lead to simpler network dynamics. In 
the TPPS, the network is strictly feed-forward using linear 
units, with the exception of two places: (1) the winner-



take-all competition among the rules in Figure 4 and (2) 
the winner-take-all competition among the symbols in 
each rule in Figure 5. This keeps the feedback within a 
module (selecting a variable) independent of the feedback 
between modules (selecting a rule). The two way 
feedback connections between the rule and clause spaces 
in DCPS cause it to have more complex dynamics. On 
the other hand, the settling process of DCPS achieves 
variable binding and conflict resolution in parallel~ while 
TPPS perlonns conflict resolution only after all produc
tions have attempted - in parallel - variable binding. 
In practice, however, TPPS settles in less than 10 steps. 

The last point we want to make about tensor representa
tions is that they are easy to manipulate. This makes both 
the design and the analysis of resulting system much 
easier than with custom coarse codings. For this reason, 
tensor products are likely to be a good flrst choice for any 
compositional representation problem. In this case, a 
straight fornard application of the tensor product did 
quite well, but even in other cases where the tensors 
products model might not work as well as one would like, 
it is likely to be a good first cut from which custom design 
c:m then progress. 
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